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Abstract Given a chaotic dynamical system and a time interval in which some quantity
takes an unusually large average value, what can we say of the trajectory that yields this
deviation? As an example, we study the trajectories of the archetypical chaotic system, the
baker’s map. We show that, out of all irregular trajectories, a large-deviation requirement
selects (isolated) orbits that are periodic or quasiperiodic. We discuss what the relevance of
this calculation may be for dynamical systems and for glasses.

Keywords Amorphous solids · Chaos · Order

1 Introduction

In this paper we discuss, with the aid of a simple example, how order arises from chaos
when we select the solutions that minimize some quantity. The motivation for this work is
twofold, one related to dynamical systems, and the other to glasses.

Consider first a chaotic dynamical system, for example a liquid flowing past an obstacle,
at large Reynolds numbers. The wake behind the obstacle is chaotic, and the pressure it
creates may exhibit considerable fluctuations. We may ask the question: given that during a
certain time-interval the average pressure has been abnormally large, what can we say about
the velocity field during that time? Is it reasonable to assume that, if the high pressure is to
last long, then the fluid phase-space trajectory has to have during that time some regularity
that is absent in a typical chaotic trajectory? What we are asking, then, is a question on
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the large deviation functions of a chaotic system: are the trajectories that sustain extreme
situations special, and in a sense simpler?

A second motivation is related to the question of the nature of the order in an ideal,
equilibrium, glass state—if, of course, such a thing exists. An approach to the glass problem
[1–3] is to consider a free-energy density functional in d-dimensional space [4]:

F [ρ(x)] =
∫

ddx ρ[lnρ(x) − 1] − 1

2

∫
ddx ddx′ [ρ(x) − ρo]C(x − x′)[ρ(x′) − ρo] (1)

where C(x − x′, ρo) is the liquid direct correlation function at average density ρo. We look
for the ‘local’ free energy minima that satisfy:

δF [ρ(x)]
δx

= lnρ(x) −
∫

ddx′ C(x − x′, ρo)[ρ(x′) − ρo] = 0 (2)

At low average densities ρo, the spatially constant ‘liquid’ solution dominates. As the density
increases, a periodic, ‘crystalline’ solution appears. What is interesting from the glassy point
of view, is that in the high density regime, there appear also many non-periodic ‘amorphous’
solutions. Each one of these is supposed to represent a metastable glassy state. These states
are local minima of (1) satisfying (2). Beyond the mean-field approximation, high free-
energy solutions are unstabilized by nucleation; if we wish to model the realistic situation
we should look for the solutions that are deepest in free energy—excluding, of course, the
crystalline state. We have then a situation analogous to the one described above for chaotic
systems: of all the solutions satisfying the “equations of motion” (2), we have to look for
the configurations that minimize globally the free energy (1), and ask whether these “large
deviation” solutions have special regularity properties.

This analogy between dynamical systems that are chaotic in time, and glassy systems
that are chaotic in space, was pointed out many years ago by Ruelle [5]. It has also appeared
in the theory of charge-density waves [6–8], in particular in the Frenkel-Kontorova model.
It turns out that the local energy minima of the model are given by the trajectories of the
“standard map”, which has both regular and chaotic orbits. However, when one restricts to
the lowest energy minima, the trajectories selected are quasiperiodic.

In a recent paper it was argued [9] that ideal glasses should exhibit a form of geometrical
order that is more general than periodic and quasiperiodic, characterized by the fact that
local motifs of all sizes are repeated often. For a system that is not completely ordered,
this assumption leads to the definition of a correlation length, defined as the largest size of
patterns that repeat more frequently than they would in a random case. The claim is then that
this correlation length should diverge in an ideal glass. But frequent repetitions of patterns
would not occur for a generic solution of a spatially chaotic glass. If order in the solution is
to happen at all it is through a mechanism as described above: choosing configurations that
globally minimize energy would then force the system to favor some patterns that would
consequently be repeated often.

In the present work we treat a simple example. The system studied has the advantage that
it is purely chaotic, we know that there are no islands of regular dynamics in phase-space.
If the large-deviation bias selects orbits which have some regularity, it does so in the most
unfavorable situation in which these orbits are isolated and unstable. The organization of
this paper is as follows: In Sect. 2, we present the baker’s map and the functional used in
our model. In Sect. 3, the trajectories that extremize the functional are found and their order
properties are discussed.
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2 The Model

In this section we briefly review the baker’s map and some of its properties. We then define
the functional used in our model and whose minimal trajectories will be studied later.

2.1 The Baker’s Map

The baker’s map is a simple two-dimensional chaotic map acting on the unit square. The
dynamical system with discretized time t , associated with the baker’s map, is defined for
qt ∈ [0,1] and pt ∈ [0,1] by the area-preserving equations

qt+1 = 2qt − �2qt� (3)

pt+1 = 1

2
(pt + �2qt�) (4)

where �2qt� is the integer part of 2qt . As shown by Fig. 1, the phase square is stretched in
the q direction and squeezed it in the p direction; the baker then cuts the right part and puts
it on top of the left one.

The baker’s map can also be understood as a shift operator. Let us consider the binary
representations qt = 0.abc . . . and pt = 0.uvw . . . where a, b, c, u, v, w, . . . are either 0
or 1. If the position (qt ,pt ) of the system at time t is written as the string “. . .wvu ·abc . . .”,
the state of system at time t + 1 is obtained by shifting the central dot to the right by one
position, that is, the string becomes “. . .wvua · bc . . . ” and we have qt = 0.bcd . . . and
pt = 0.auv . . . .

The baker’s map is deterministic: if the system is started at initial conditions (q0,p0),
(3) and (4) determine its position at all future (and past) times. However, the system is
chaotic in the sense that a small uncertainty in the initial conditions grows exponentially in
time (the shift operator doubles it at each iteration); when the uncertainty reaches the size of
the phase square (here, this size is unity), the position of the system becomes unpredictable.

Although almost all trajectories are aperiodic, there are many initial conditions leading
to periodic orbits. Considering the shift operator interpretation and remembering that the
binary representation of a rational number has a periodic pattern, one sees that the periodic
orbits are related to rational numbers. In Fig. 2 (left), the rational number 5/31 (whose bi-
nary representation is the periodic string 0.00101 00101 00101 . . . ) was chosen as the initial
position q0 (the top-left point). The ordinate p0 is such that its binary representation is the
mirror of q0’s binary representation. After five units of time, the dot shifts five times to the
right and one has q5 = q0; thus, the orbit is periodic with period 5. A periodic orbit can be
described by the binary digits of the periodic pattern in the binary representation. In our
example, the orbit is {n4, . . . , n0} = {0,0,1,0,1}. Obviously, a cyclic permutation of these
five digits doesn’t change the orbit.

Fig. 1 One iteration of the baker’s map
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Fig. 2 Representation of the periodic orbit {n4, . . . , n0} = {0,0,1,0,1} in the phase square (left). The arrow
shows the direction of the trajectory. An irregular orbit that never is an extremal trajectory, for any q∗ (right)

Strictly speaking, the binary representation of a rational is not always periodic, but the
non-periodic part is located near the dot and has a finite length. For example, the number
q0 = 5/31 + 1/4 is written as 0.011 01001 01001 . . . . After many iterations of the map, the
system forgets the 1/4 term in q0 (its second most significant bit), because it is shifted to
less and less significant places in the binary representation of pt ; the initial p0 is forgotten
as well. It is clear that as long as the initial position q0 is rational, the trajectory falls into a
periodic orbit after some time. If a q0 is chosen randomly and uniformly in the unit interval,
it is irrational. Indeed, although rational numbers are dense in the unit interval, they form
a set with zero measure. As a consequence, typical trajectories are not periodic. Because
the baker’s map is ergodic, such a typical trajectory fills up uniformly the phase square.
Furthermore, a small perturbation of an initial condition associated with a periodic orbit
yields a chaotic orbit.

The baker’s map has two unstable fixed points which correspond to periodic orbits with
period one. These two orbits are {0} and {1}, respectively the points located at the origin
(0,0) and the opposite corner (1,1).

2.2 Large Deviations

Let us introduce in our model an observable which is a functional of the trajectories. Our
choice is arbitrary, we are motivated here by simplicity. We consider a functional parame-
trized by a number q∗ in [0,1]:

h[{qt }, q∗] = lim
T →∞

1

T

T −1∑
t=0

(qt − q∗)2 (5)

The observable h can be interpreted geometrically as the average squared distance over
time between the trajectory and a reference vertical line located at q∗, as schematically
represented in Fig. 2. For each value of the parameter q∗, there is one particular trajec-
tory that minimizes the average distance h. Note that h is invariant by the transformation
(qt , q∗) → (1 − qt ,1 − q∗) so if {qt } is an extremal trajectory for q∗ ≤ 1

2 , {1 − qt } is an
extremal trajectory for 1 − q∗ ≥ 1

2 . Hence, we can restrict the study to 0 ≤ q∗ ≤ 1
2 . Although

the baker’s map is bidimensional, the problem is actually one-dimensional only, because
the dynamics on the q axis are not coupled to the one on the p axis, as shown by (3). The
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Fig. 3 Value of the
observable (5) for the minimal
trajectory (lowest curve), the
maximal trajectory (highest
curve) and a typical trajectory
(middle curve)

two-dimensional generalization of the observable (5) would be the average squared distance
between the trajectory and a reference point located at (q∗,p∗):

lim
T →∞

1

T

T −1∑
t=0

[(qt − q∗)2 + (pt − p∗)2] (6)

The extremal trajectories for (q∗,p∗) of the observable (6) are easily deduced from the
extremal trajectories of the one-dimensional observable (5) for the parameter 1

2 (q∗ + p∗). It
will indeed be clear later that the extremal trajectories are left invariant by the transformation
that swaps the q and p axis; this transformation is equivalent to reversing the time. The orbit
in Fig. 2 is for example the minimal trajectory for the chosen value of q∗ (and actually for
any q∗ in the whole range [0.385,0.411]) and has the (p ↔ q) symmetry, as do the orbits
of Fig. 6.

The worse state in the sense of minimization of h is one of the two fixed points. If q∗ ≤ 1
2 ,

this maximal trajectory is the fixed point (1,1) and we have h = (1−q∗)2. On the other hand,
the distribution of the qt for a chaotic trajectory is uniform in the unit interval and the mean
distance is calculated by the continuous sum

hchaotic(q∗) =
∫ 1

0
(q − q∗)2 dq = 1

3
− q∗(1 − q∗) (7)

Figure 3 shows the energies of the minimal orbit (which we shall determine below), the
maximal orbit and a typical (i.e. chaotic) orbit. It is worth noting that chaotic orbits never
minimize or maximize the functional. In the next sections, the minimal trajectories of h are
made explicit and found to be periodic for most values of q∗ and quasi-periodic for some
(zero measure) set of values of q∗.

3 Large-Deviation Function as a Free Energy of a 1D Lattice Gas Model

3.1 Mapping to the Particle Model

In this section, we will show that the functional (5) can be interpreted as the Hamiltonian of
particles on a one-dimensional lattice with single occupancy and a translationally invariant
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interaction. That is,

h = 1

M

M∑
i,j=1

U|i−j |ninj − μρ + h0

where ρ is the particle density, and μ acts as a chemical potential. The interaction will be
shown to decay exponentially with distance.

As stated earlier, a point on a periodic orbit (of period N ) is represented by the binary se-
quence 0.nN−1 . . . n1n0nN−1 . . . ≡ {nN−1, . . . , n1, n0}. Note that this number may be written
as

{nN−1, . . . , n0} = 1

2N − 1
(2N−1nN−1 + · · · + 21n1 + n0)

We define σ as the cyclic left shift operator (or left cyclic permutation) to be applied on
the digits ni of the period, that is

σ {nN−1, . . . , n1, n0} = {nN−2, . . . , n0, nN−1}
The ith iteration of σ may be written as

σ i{nN−1, . . . , n0} = 1

2N − 1

N−1∑
j=0

2[j+i]nj

Here and in what follows [•] denotes the exponents and indices modulo N .
Taking into account the periodicity and expanding, the observable (5) now reads

h = u − μρ + h0 (8)

where

ρ = 1

N

N−1∑
j=0

nj , μ = 2q∗, h0 = q2
∗ (9)

and with u given by

u = 1

N

∑
(σ i{nN−1, . . . , n0})2 = 1

N(2N − 1)2

∑
i

∑
jk

2[j+i]2[k+i]njnk

= 1

N

∑
jr

(
1

(2N − 1)2

∑
i

2[j+i]2[j+r+i]
)

njn[j+r] (10)

In the above, all the indices are summed from 0 to N −1. Shifting the exponents on the right
hand side as i → [i − j ] we get:

u = 1

N

∑
jr

U(N)
r njn[j+r] with U(N)

r = 1

(2N − 1)2

∑
i

2[i]2[r+i] (11)

In Appendix A we show that

U(N)
r = 1

3

2N−r + 2r

2N − 1
(12)
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3.2 The Long-Orbit Limit

Consider now a very long chain of size M , particles with occupation numbers ni , and an
interaction given by

h = 1

M

M∑
i,j=1

U|i−j |ninj − μ

M

M∑
i=1

ni + h0 = 1

3M

M∑
i,j=1

2−|i−j | ninj − 2q∗ρ + (q∗)2 (13)

that is, Ur = 1
3 2−|r|. Let us compute the energy of a periodic configuration of period N  M .

We can re-express the unrestricted sum (13) as a sum over the first period as in Fig. 4, adding
first each position r within the first period with its repetitions in all other periods. We may
express these contributions as two geometric series, corresponding to the particles to the
right and to the left, respectively:

1

3
{[2−r + 2−(N+r) + 2−(2N+r) + · · · ] + [2−(N−r) + 2−(2N−r) + 2−(3N−r) + · · · ]}

= 1

3

1

(1 − 2−N)
[2−r + 2−N+r ] = 1

3

2N−r + 2r

2N − 1
= U(N)

r (14)

Thus, (11) is recovered. This means that we may consider, without loss of generality,
a very long periodic chain of size M , and the energy of periodic configurations of peri-
ods N  M will be correctly computed by the interaction (13). This, in turn means that our
large functional (5) can be computed for large times on the basis of the particle model (13).

3.3 Large Deviation Function

Given a time T , we express the probability of observing a value of the quantity defined in (5)
as:

P (h[qt , q∗] = h) = e−T ξ(h) (15)

Fig. 4 Counting the energy of a
periodic configuration as the sum
of two geometric series,
corresponding to the set of
periods to the right, and to the
left, respectively
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this defines ξ(h). Alternatively, we may express the same information in the large deviation
function f (λ):

e−Tf (λ) =
∫

dλP (h[qt , q∗] = h)e−λT h (16)

For long times T , we have that ξ and f are related by a Legendre transform. In fact, we
recognize f (λ) as the free energy density of the particle model at inverse temperature λ. In
particular, the ground state (corresponding to infinite λ) is given by the trajectory minimiz-
ing h.

3.4 The Ground State of the Lattice Particle Model

Let us start by considering the minimum of the energy (13) :

min{h} = min

{
1

M

∑
jr

Urnjn[j+r] − 2q∗ρ + (q∗)2

}
= min

ρ
{Umin(ρ) − 2q∗ρ + (q∗)2} (17)

where Umin(ρ) is the smallest energy for a fixed configuration density. Although it is tempt-
ing to determine the value of ρ of the extremal configuration by

dUmin(ρ)

dρ
= 2q∗ (18)

this must be treated with care, because as we shall see, the derivative is discontinuous. Note
again that q∗ plays the role of a chemical potential.

Our job is now to determine Umin(ρ). This problem was solved years ago [10, 11] for
long-range (Ur > 0 ∀r) interactions with Ur convex downwards, as is the case here.

For the moment, let us forget the lattice. If the particles can take any position on a one-
dimensional line with periodic boundary conditions, the ground state is simply a crystal, that
is, each particle is separated from its neighbor by the same distance d = 1/ρ. The condition
of convexity of the interactions can be understood as a stability condition. Indeed, if one
considers a first-neighbor concave interaction as shown in Fig. 5 (left), a displacement of
one particle in the crystal would decrease the energy of the system: the system is not stable.
On the contrary, if the first-neighbor interaction is convex as shown in Fig. 5 (right), a
displacement of one particle would increase the energy of the system.

For particles constrained to lie on a lattice, if ρ is such that the mean distance 1/ρ is an
integer, then the ground state is again periodic with particles separated by this same distance

Fig. 5 Change �u of the energy
of a crystal configuration after
the displacement of one particle
for a concave interaction (left)
and a convex interaction (right)
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Fig. 6 Examples of minimal orbits for different values of q∗ . The density of 1’s ρ of the orbits are indicated

1/ρ. In the baker’s map representation, the trajectory corresponding to such a crystal is very
regular. Figure 6 shows the ρ = 1

3 , ρ = 1
4 and ρ = 1

5 minimal trajectories. As 1/ρ becomes
larger, the minimal trajectory spends more and more time near the fixed point (0,0).

If 1/ρ is not an integer, then it lies between the two successive integers d = �1/ρ� and
d +1, and the distance between any two consecutive particles will be either d or d +1. There
is a competition between the solution with density 1/d and the one with density 1/(d + 1).
This is seen in the baker’s map, where Fig. 6 shows that the trajectory for ρ = 5/17 spends
some time in the ρ = 1/4 (period 4) solution and some time in the ρ = 1/3 (period 3)
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Fig. 7 The period of the
minimal trajectory as a function
of q∗ . The fractions specify the
density ρ of particles in the
corresponding configuration.
Only the largest steps are
indicated

Fig. 8 Determination of the
ground state of the lattice
Hamiltonian for ρ = 3/7. The
arrows indicate the position of
the particles

solution. The competition between the two solutions 1/d and 1/(d + 1) is also seen in
Fig. 7. In this figure, the 1/d solutions are seen to dominate for some large range of values
of q∗. When varying the parameter q∗ continuously in order to go from the 1/d solution to
the 1/(d + 1) solution, the period takes many intermediate values “interpolating” between
periods 3 and 4.

Let us now turn to the full solution, which was originally given in terms of continued
fractions [10, 11] and admits a graphical construction related to that employed in quasicrys-
tals [12, 13] which we will describe. Consider the plane and the lattice of points with integer
coordinates, as shown in Fig. 8, and the line with slope ρ starting at the origin (0,0). The
algorithm to solve the problem is quite simple: for each integer abscissa k, compute the
ideal ordinate kρ and round it to the closest smaller integer yk , then, mark the point (k, yk).
The ground state corresponding to density ρ is simply given by the sequence of binary digits
nk = yk −yk−1, that is, there is a particle in site k in places where the black pixels have a step
upwards. In fact, the line can start at any arbitrary point; this leads to different sequences
with the same energy. These sequences have the form

nk = �kρ + φ� − �(k − 1)ρ + φ� (19)

where φ is a phase factor related to the y-intercept of the line. Figure 8 shows the determi-
nation of the ground state for ρ = 3/7. One can read directly the ground state by looking at
the ordinates of the black pixels.
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Following Aubry [14], one can obtain an exact expression for the energy Umin(ρ). We
need to introduce first another useful representation of the ground state. If xj is the position
the j th particle, we have

xj =
⌊

j

ρ
+ const

⌋
(20)

Next, we rewrite the interaction term as

U =
∑

r

ur (21)

where the ur is the average contribution of all pairs of r th neighboring particles

ur = ρ〈U(xj+r − xj )〉 (22)

and 〈•〉 denotes averaging over all such pairs, in the limit M → ∞. Let us derive an explicit
expression for the ur . The distance xj+r −xj between two particles separated by r −1 others,
is either �rρ−1� or �rρ−1� + 1. If πr is the fraction of pairs having the value �rρ−1�, and
(1−πr) of having �rρ−1�+1, 〈xj+r −xj 〉 is by definition πr�rρ−1�+(1−πr) (�rρ−1�+1).
Using the fact that

〈xj+r − xj 〉 = 〈xj+r − (j + r)ρ−1〉 − 〈xj − jρ−1〉 + rρ−1 = rρ−1

we conclude that

πr = 1 − (rρ−1 − �rρ−1�)
We thus obtain an explicit expression of the interaction term:

Umin = ρ
∑

r

[πrU(�rρ−1�) + (1 − πr)U(�rρ−1� + 1)]

= 1

2

∑
r

(2 − (rρ−1 − �rρ−1�))ρU(�rρ−1�) (23)

Umin is continuous everywhere and its derivative

u′(ρ) = dUmin

dρ
=

∑
r

(
1 + 1

2
�rρ−1�

)
U(�rρ−1�) (24)

is an increasing function, as shown in Fig. 9.
The density can be determined from the knowledge of q∗ following (18): the y-axis in

Fig. 9 is 2q∗. When the level 2q∗ hits on an interval between two values, the lower step
is chosen. The density ρ is thus given by Fig. 10. Once ρ is known, the configuration can
be obtained either graphically from Fig. 8, or with (20). The value of the ‘energy’ can be
obtained from (17) and (23), or the top part of Fig. 9.

If 2q∗ falls between two steps of the u′(ρ) curve, i.e. there exists a ρ such that u′(ρ−) ≤
μ ≤ u′(ρ+), then ρ is rational and is the density of the ground state; the configuration of
particles is consequently periodic. The width of the interval of q∗ corresponding to this
density is given by the discontinuity of the energy’s slope 2δq∗(ρ) = u′(ρ+) − u′(ρ−) If, on
the contrary, there exists a ρ such that u′(ρ) = 2q∗, then ρ is irrational: the ground state has
density ρ and the configuration of particles is quasi-periodic.
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Fig. 9 Energy u = h(q∗ = 0)

and its first derivative du/dρ

plotted versus the density ρ

There exists a smallest integer r such that rρ−1 = s where s is an integer. For this r and
for all its multiples kr , u′

kr (ρ) is discontinuous and
∑

k,r (u
′
kr (ρ

+) − u′
kr (ρ

−)) is the sum of
the discontinuities. We obtain, with ρ = r

s

(u′(ρ+) − u′(ρ−)) = 1

3

∞∑
k=1

(ks)2−ks = s

3

2s

(2s − 1)2

Note that the result does not depend on the numerator r .
Although a quasi-periodic ground state can be obtained by choosing the right q∗, the set

of such particular values has zero measure. Indeed, the sum of all discontinuities of u′(ρ)

for 0 ≤ ρ ≤ 1 rational, is

� =
∑

ρ= r
s ∈[0,1]

(u′(ρ+) − u′(ρ−)) = 1

3

∞∑
s=1

∞∑
k=1

ϕ(s)(ks)2−ks

where ϕ(s) is the Euler function equal to the number of integers in [1, s −1] that are coprime
to s. Using the change of variable u = ks and a known property of the Euler function, we
obtain

� = 1

3

∞∑
u=1

u2−u
∑
k|u

ϕ(k) = 1

3

∞∑
u=1

u22−u = 4

3
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Fig. 10 The density ρ of the
ground state plotted versus the
chemical potential μ = 2q∗ . This
curve is a complete devil’s
staircase

We have proved that � = 4
3 = u′(1) − u′(0), that is, the probability that a fixed q∗ falls

between steps is one. In other words, the probability that the density is rational is one and
the set of values of q∗ associated with quasi-periodic orbits has zero measure.

The solution ρ(q∗) plotted in Fig. 10 has a devil’s staircase structure: it is a continuous
curve, constant on some interval when ρ is rational.

4 Concluding Remarks

We have studied the trajectories of the baker’s map that extremize the average squared dis-
tance to a line q = q∗. The minimal trajectory is periodic for most values of q∗; and quasi-
periodic for a zero-measure set of values of q∗. For all values of q∗, the minimal trajectory
exhibits more order than the generic chaotic trajectories. This does not mean that the tra-
jectories involved are not chaotic in the sense of being insensitive to boundary conditions:
a slight perturbation of the initial condition of an extremal trajectory leads to a new tra-
jectory that departs away from the periodic one, and ultimately explores ergodically all
phase-space—thus spoiling its extremal properties.

The ordered structure of the minimizing state highly depends on fact that the correspond-
ing Hamiltonian in the 1D lattice gas has infinite range. In the case in which the Hamiltonian
of the 1D lattice gas has a finite range (Ur = 0 for r > R—one may think about a hard-
sphere model), for small enough density any configuration with interparticle distance > R

minimizes the energy; and the vast majority of configurations is not ordered. This is easy
to understand for the baker’s map: such an interaction corresponds to minimizing a func-
tional that does not depend on all digits of the positions, i.e. it is a functional in which the
trajectories contribute in a degenerate manner.

In the other extreme, functionals that are long-range in time may also yield disordered
extremal trajectories. For the baker’s map, the observable to be minimized could be

lim
T →∞

(
1

T

T −1∑
t=0

(�2qt� − 1/2)

)2

where �2qt� is the t th binary digit of q0. This is a long-range antiferromagnet: the sum thus
has disordered, degenerate ground states. Note that this observable is not local in the sense
that the position at time t is coupled to the position at different time t ′.
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In conclusion, we have presented a simple example illustrating that those trajectories of
a map which extremize some functional may exhibit structure absent in the entire ensemble
of trajectories. This is reminiscent of the Frenkel-Kontorova model, where the ground states
possess quasiperiodic translational order [6–8], while other stationary solutions do not. It
is tempting to conjecture that such behavior is the rule rather than the exception, and may
therefore be relevant to systems which are chaotic in either the spatial or temporal domain.

Appendix A

Let us start with

U(N)
r = 1

(2N − 1)2

∑
i

2i2i+r (25)

We first determine U
(N)

0 :

U0 = 1

3

2N + 1

2N − 1
(26)

Next, let us express U
(N)

r+1 in terms of U(N)
r . We split the sums in

Ur+1 = 1

(2N − 1)2

N−1∑
i=0

2i2[i+r+1] (27)

as
N−1∑
i=0

=
∑

i+r+1<N

+
∑

i+r+1≥N

=
N−r−2∑

i=0

+
N−1∑

i=N−r−1

(28)

so that

U
(N)

r+1 = 1

(2N − 1)2

(
N−r−2∑

i=0

2i2i+r+1 +
N−1∑

i=N−r−1

2i2i+r+1−N

)
(29)

(here the exponents are not necessarily modulo N ). The first and second sums read:

N−r−2∑
i=0

2i2i+r+1 = 2

(
N−r−1∑

i=0

2i2i+r+1

)
− 2N−r−12N (30)

and
N−1∑

i=N−r−1

2i2i+r+1−N = 2

(
N−1∑

i=N−r

2i2i+r−N

)
+ 2N−r−1 (31)

so that (29) can be written

U
(N)

r+1 = 2U(N)
r − 1

(2N − 1)2
(2N−r−12N − 2N−r−1) (32)

U
(N)

r+1 = 2U(N)
r − 2N−r−1

2N − 1
(33)
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or: (
2r+1U

(N)

r+1

) = 4
(
2rU(N)

r

) − C (34)

with C = 1/(1 − 2−N). Putting

br = 2rU(N)
r − C

3
(35)

the recurrence equation becomes

br+1 = 4br (36)

which implies that br = b04r , with b0 = U
(N)

0 − C
3 , leading to:

U(N)
r = C

3
+ 4r

(
U

(N)

0 − C

3

)
= 1

3

2N−r + 2r

2N − 1
(37)
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